LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - CHEMISTRY

THIRD SEMESTER - NOVEMBER 2007
MT 3103/3101 - MATHEMATICS FOR CHEMISTRY
\square Max. : 100 Marks

SECTION A

Answer ALL questions:

1. Differentiate $\log \sec ^{-1}\left(x^{4}\right)$.
2. Find the slope of the curve $y=\frac{6 x}{x^{2}-1}$ at $(2,4)$.
3. Evaluate $\int \frac{d x}{\sqrt{x(3-2 x)}}$.
4. Evaluate $\int \frac{d x}{\left(1+e^{x}\right)\left(1+e^{-x}\right)}$.
5. Prove that $\frac{e+1}{e-1}=\frac{\frac{1}{1!}+\frac{1}{3!}+\frac{1}{5!}+\ldots \ldots \ldots \ldots . .}{\frac{1}{2!}+\frac{1}{4!}+\frac{1}{6!}+\ldots \ldots \ldots \ldots . .}$.
6. Obtain a partial differential equation by eliminating a, b from $(x-a)^{2}+(y-b)^{2}+z^{2}=1$.
7. If $\cos (A+i B)=\cos \theta+i \sin \theta$, prove that $\cos 2 A+\cosh 2 B=2$.
8. Obtain the Fourier coefficient a_{0} for the function $f(x)=x^{2}$ in $-\pi \leq x \leq \pi$.
9. State the axioms of probability.
10. Mean and variance of a binomial distribution are 4 and $\frac{4}{3}$. Find $P(X \geq 1)$.

SECTION B

Answer any FIVE questions:

$$
5 \times 8=40
$$

11. Find the angle of intersection of the curves $r=a(1+\cos \theta)$ and $r=b(1-\cos \theta)$.
12. Prove that $\int_{0}^{\frac{\pi}{2}} \log \sin x d x=\frac{\pi}{2} \log \frac{1}{2}$.
13. Solve (a) $z=p x+q y+p q$.
(b) $p+q=\sin x+\sin y . \quad(5+3)$
14. Evaluate $\int \frac{d x}{(x+1) \sqrt{x^{2}+x+1}}$.
15. Separate the real and imaginary parts of $\tan ^{-1}(x+i y)$.
16. Prove that $\frac{\sin 7 \theta}{\sin \theta}=7-56 \sin ^{2} \theta+112 \sin ^{4} \theta-64 \sin ^{6} \theta$.
17. A and B throw alternatively a pair of balanced dices. A wins if he throws a sum of 6 points before B throws a sum of 7 points, while B wins if he throws a sum of 7 points before A throws a sum of 6 points. If A begins the game, show that its probability of winning is $30 / 61$.
18. A coffee connoisseur claims that he can distinguish between a cup of instant coffee and a percolator coffee 75% of the time. It is agreed that his claim will be accepted if he correctly identifies at least 5 of the 6 cups. Find his chance of having the claim (i) Accepted (ii) Rejected, when he does not have the ability, he claims.

SECTION C

Answer any TWO questions:

$$
2 \times 20=40
$$

19. (a) Find the condition that the curves $a x^{2}+b y^{2}=1$ and $a_{1} x^{2}+b_{1} y^{2}=1$ shall cut orthogonally.
(b) Find the maximum and minimum value of $2 x^{3}-3 x^{2}-36 x+10 . \quad(10+10)$
20. (a) Solve $\left(D^{2}+3 D+2\right) y=\sin x+e^{2 x}$.
(b) $\int_{0}^{\pi} \frac{x \tan x}{\sec x+\tan x} d x$. $(12+8)$
21. (a) Sum to infinity the series $1+\frac{1+2}{2!}+\frac{1+2+2^{2}}{3!}+\ldots$ \qquad
(b) Find the eigen values and eigen vectors of $\left|\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right|$. $\quad(6+14)$
22. (a) Obtain the Fourier series for the function $f(x)=\left(\frac{\pi-x}{2}\right)^{2}$ in $(0,2 \pi)$ and deduce that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots \ldots . . \infty=\frac{\pi^{2}}{8}$.
(b) Find the mean and variance of Poisson distribution. $(12+8)$
